Documenting an experiment: IMRD

1.0 Introduction

2.0 Methods

3.0 Results

4.0 Discussion

Documents have these four sections. The Introduction describes the problem to be solved and the objective of the experiment. The Methods describes how the experiment was conducted, down to the last detail. A good methods section has enough information that someone could replicate the experiment. The Results shows the data and the analyzed data and typically includes plots and tables. Results are objective. The Discussion has your subjective interpretation of the results. A good example for determining what is a result and what is a discussion is this. "The temperature was 85 degrees F " is a result while, "It was hot" belongs in the discussion because hot is your interpretation of the data.
Writing hints: Write in $1^{\text {st }}$ person active or $3^{\text {rd }}$ person passive. Results written in past tense.

A good document has...

- Title
- Meaningful and descriptive
- Authors, affiliation, date
- Citations

[^0]
A good document has....

- Clear, simple writing
- No jargon
- Just the right amount of information
- Meaning to the reader
- Pictures and graphics where appropriate
- Meaningful data plots
- No spelling, grammatical errors, typos

I wrapped the tape around the four legs of my dining room table. I counted 133 wraps plus some left over so that meant the tape was 812 ft . long.

Example of a poor methods section for an experiment whose objective was to find the length of a video tape. The description does not have sufficient details to replicate the methods.

I measured the distance around the four legs of my dining room table. To measure the distance, I wrapped a string around the legs, then laid the string tight on a 25 ft . carpenters tape. The distance was 6 ft . 1 in. (to the nearest inch) I then wrapped the video tape around the legs and counted 133 complete wraps plus three feet of tape left over. The total tape length was therefore (133×6.083) $+3=812 \mathrm{ft}$. I believe this number is accurate to +- 1.0 ft .

How To Cite

- For credibility, must cite sources
- Common knowledge need not be cited
- "Water is wet"
- $\quad F=m a$
- Special knowledge must be cited
- "There are 780,000 new cases of stroke each year in the U.S.
$-y=\frac{P L^{3}}{48 E I}$

Academic Paper Example

Efficiency. Stimulated muscles behave as nonlinear, timevarying actuators with significant power and energy limitations $[27,32]$. Thus, the mechanical system must minimize energy loss during operation. Of primary concern is the process of storing, channeling, and discharging the energy from the quadriceps. Any

[27] Goldfarb, M., and Durfee, W. K., 1996, "Design of a Controlled-Brake Orthosis for FES-Aided Gait," IEEE Trans. Rehabil. Eng., 4(1), pp. 13-24
[28] Goldfarb, M., Korkowski, K., Harrold, B., and Durfee, W., 2003, "Preliminary Evaluation of a Controlled-Brake Orthosis for FES-Aided Gait," IEEE Trans. Neural Syst. Rehabil. Eng., 11(3), pp. 241-248.
[29] van den Bogert, A. J., 2003, "Exotendons for Assistance of Human Locomotion," BioMedical Engineering OnLine, 2(17).
[30] Jefferson, R., and Whittle, M., 1990, "Performance of Three Walking Orthoses for the Paralysed: A Case Study Using Gait Analysis," Prosthet. Orthot Int., 14, pp. 103-110.
[31] Gharooni, S., Heller, B., and Tokhi, M. O., 2001, "A New Hybrid Spring Brake Orthosis for Controlling Hip and Knee Flexion in the Swing Phase," IEEE Trans. Neural Syst. Rehabil. Eng., 9(1), pp. 106-107.
[32] Durfee, W. K., and Palmer, K. I., 1994, "Estimation of Force-Activation, Force-Length, and Force-Velocity Properties in Isolated, Electrically Stimulated Muscle," IEEE Trans. Biomed. Eng., 41(3), pp. 205-216.
[33] Winter, D., 1979, Biomechanics of Human Movement, Wiley, New York.

Information Sources to Cite

- Academic journal and conference papers
- Text books
- Trade magazine articles
- Catalogs and data sheets
- Manufacturer web sites
- Government web sites

Suggestions

- Use accepted style (ASME, APA, Harvard,...)
- Use RefWorks or EndNote or Zotero to manage citations
- Resources at UMN library and elsewhere
- RefWorks www.lib.umn.edu/site/refworks.phtml
- Tutorial by UMN library http://tutorial.lib.umn.edu/infomachineb5bb.html?moduleID=10
- Durfee lab engineering writing page http://www.me.umn.edu/labs/hmd/lab/writing.html

Data plots

- Understand objectives
- Pick the right data set
- Pick the best plot format
- Format and style
- Data dominates
- Label axes, quantity (units)
- Descriptive title

Read these classic books for another take on presenting data.

Be Honest and Keep It Simple

- Chart must reflect data accurately
- Watch out for "Lie Factor"
- (size of graphic effect)/(size of data effect)
- Focus on data
- Avoid "chartjunk" (Tufte)

A confusing figure because the dollars come in chunks but the scale is uniform. Plus y-axis anchor is not zero.

Research Note

U.S. Department of Transportation

National Highway Traffic Safety Administration

January 1998												
Crash Data and Rates for Age-Sex Groups of Drivers, 1996 Ezio C. Cerrelli												
1996 DRIVER CRASH AND FATALITY DATA - ALL DRIVERS												
DRIVER AGE	Licensed drivers	average ANNUAL	TOTALMILES of travel	DRIVERS IN all crashes	DRIVERS in FATAL	DRIVER FATALIties	CRASH INV. RATE (*)	FAT.INV. RATE (*)	FATALITY RATE (*)	CRASH INV. RATE (*)	FAT.INV. RATE	fatality RATE (*)
GROUP	(thousands)	TRAVEL	(millions)	(thousands)	CRASHES		(per VMT)	(per VmT)	(per VMT)	(per LIC.)	(per LIC.)	(per LIC.)
16 -	1,579	6,445	10,180	422	1,663	696	4,146	16.34	6.8	267	1.05	0.44
17	2,313	7,366	17,037	408	1,427	541	2,396	8.38	3.2	177	0.62	0.23
18	2,554	9,097	23,235	407	1,740	749	1,752	7.49	3.2	159	0.68	0.29
19	2,787	11,737	32,717	375	1,626	698	1,145	4.97	2.1	134	0.58	0.25
20-24	15,259	11,611	177,172	1,569	7,895	3,513	886	4.46	2	103	0.52	0.23
25-29	18,302	12,846	235,110	1,494	6,631	2,743	635	2.82	1.2	82	0.36	0.15
30-34	19,992	13,397	267,822	1,446	6,395	2,613	540	2.39	1	72	0.32	0.13
35-39	20,960	12,939	271,192	1,467	5,917	2,347	541	2.18	0.9	70	0.28	0.11
40-44	19,528	13,771	268,912	1,147	4,743	1,922	427	1.76	0.7	59	0.24	0.1
45-49	17,464	13,424	234,442	1,057	3,892	1,560	451	1.66	0.7	61	0.22	0.09
50-54	13,603	12,214	166,150	637	2,916	1,206	383	1.76	0.7	47	0.21	0.09
55-59	10,599	11,582	122,765	456	2,177	944	371	1.77	0.8	43	0.21	0.09
60-64	9,051	10,422	94,325	351	1,896	907	372	2.01	1	39	0.21	0.1
65-69	8,465	8,997	76,163	312	1,645	882	410	2.16	1.2	37	0.19	0.1
70-74	7,354	7,072	52,005	271	1,605	956	521	3.09	1.8	37	0.22	0.13
75-79	5,279	5,647	29,815	195	1,379	877	654	4.63	2.9	37	0.26	0.17
80-84	2,916	4,655	13,575	106	998	704	782	7.35	5.2	36	0.34	0.24
$85+$	1,533	3,907	5,992	55	611	475	912	10.2	7.9	36	0.4	0.31
TOTAL	179,539	11,689	2,098,607	12,173	55,156	24,333	580	2.63	1.2	68	0.31	0.14

(*) Rates are per $100,000,000$ Vehicle Miles of Travel and per 1,000 Licensed Drivers

Tables make it hard to find the data. Good for appendices but not for the main body or for presentations.

DRIVER	FATALIT Y
AGE	RATE ${ }^{*}$)
GROUP	(per VMT)
$16-$	6.8
17	3.2
18	3.2
19	2.1
$20-24$	2
$25-29$	1.2
$30-34$	1
$35-39$	0.9
$40-44$	0.7
$45-49$	0.7
$50-54$	0.7
$55-59$	0.8
$60-64$	1
$65-69$	1.2
$70-74$	1.8
$75-79$	2.9
$80-84$	5.2
$85+$	7.9

Isolating the data you want helps.

Driver fatalities

A chart is better. This chart has unnecessary color and 3-D. All you see is the color, not the data.

Driver safety varies with age

This is a good chart. The title tells the story and the data is clear of "chartjunk"

Make sure the reader can
FAT DOTS !
see the data.

tie points

fit model

Curved lines are fine if you are fitting the data to a model. If the purpose is simply to tie points together, use straight lines.

Lab Report Style Guide

http://me.umn.edu/education/undergraduate/writing.shtml

[^0]: A non-descriptive title is "The beam
 experiment." A descriptive title is
 "Experimentally Determined Elastic Modulus of a Yardstick."

 Citations are very important. If you use an equation or include a figure, cite the source of the equation or figure. The rule is that without a cite, you drew the figure or took the photograph or you derived the equation.

