Design Reports Webinar

Mark Abotossaway
Blue Origin Engineer and FNL Assistant

The material contained in this document is based upon work supported by a National Aeronautics and Space Administration (NASA) grant or cooperative agreement. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA.
Webinar Overview

- Milestone Overview
- Design Reports Schedule
- Proposal Expectations
- Preliminary Design Expectations
- Critical Design Expectations
- Flight Readiness Expectations
- Post Launch Assessment Expectations
- Flysheets
- Project Management
Meet the FNL Team

Wisconsin Space Grant Foundation
- Kevin Crosby, Director
 - kcrosby@carthage.edu
- Christine Bolz, Assistant Director
 - cbolz@carthage.edu
- Rob Cannon, FNL Project Manager
 - rcannon@carthage.edu
- Connie Engberg, Project Support Assistant
 - cengberg@carthage.edu
- Megan Goller, Accounts Assistant
 - mgoller@carthage.edu

First Nations Launch
- Frank Nobile, Technical Coordinator, Wisconsin Tripoli
 - maxq3@aol.com
- Mark Abotossaway, Project Assistant/Advisor Liaison, Blue Origin (Alumni)
 - mark.a.abotossaway@gmail.com

Tripoli Rocket Association
- Bob Justus, Tripoli Assistant, Illinois Tripoli
 - bob@mhbofni.com
- Kevin Harnack, Tripoli Assistant, Wisconsin Tripoli
Design Milestones Overview

● Initial Milestone
 ○ Industry – Request for Proposals (RFP)
 ○ Academia – Notice of Intent (NOI)

● Phase Gated Process
 ○ Proposal
 ○ Preliminary Design
 ○ Critical Design
 ○ Flight Readiness
 ○ Post Launch Assessment

● Each Phase is ‘Gated’
 ○ Must be successfully passed to move through gate
Design Milestones Overview

● Each Milestone Involves:
 ○ Design Freeze
 ○ Written Design Report
 ○ Flysheet
 ○ Virtual Review *

● Each Design Report Includes:
 ○ Team Overview
 ○ Facilities / Equipment*
 ○ Vehicle Design
 ○ Challenge Design
 ○ Safety
 ○ Project Management
Reports Schedule

- Notice of Intent Oct 20, 2023
- Proposal Report Dec 11, 2023
- Preliminary Design – Report Jan 22, 2024
- Preliminary Design – Virtual Jan 29 – Feb 2, 2024
- Critical Design – Report Feb 26, 2024
- Critical Design – Virtual Mar 4 - 8, 2024
- Flight Readiness – Report Apr 1, 2024
- Flight Readiness – Virtual (Inspection) Apr 8 - 11, 2024
- Launch Weekend Presentation Apr 26, 2024
- Post Launch Assessment May 13, 2024

Key: Written Report Oral Report
Proposal Phase

- Proposal Phase includes:
 - Forming stage of Team Development
 - Outlining / acquiring the resources needed
 - Advisor and Mentor and Team Members
 - Understanding Rocketry and Payload Safety
 - Initial Technical Design Concepts
 - Rocketry and Challenge
 - Trade Studies and Simulations
 - Drafting Project Management
 - Test Plan and Requirements
 - Budget and Schedule
 - No procurement at this phase
Proposal Phase

- Proposals should show trade studies of various design ideas
 - Examine various rocket materials / sizes / costs
 - Ensure you are meeting vehicle requirements
 - Examine various payload / challenge options
 - Ensure you are meeting challenge requirements
 - Include RockSim simulations
 - Ensure you are meeting performance requirements
 - Draft initial Project Management documents
 - Test Plan, Requirements, Budgets, Schedules
 - No procurement at Proposal Phase (trade studies)
Reports Overview

<table>
<thead>
<tr>
<th></th>
<th>Proposal</th>
<th>PDR</th>
<th>CDR</th>
<th>FRR</th>
<th>PLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Summary</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilities and Equipment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Challenge Criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Overview</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plan – Test</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plan - Requirements</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plan - Budget</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plan - Schedule</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preliminary Design (PDR) Phase

- PDR Phase Includes:
 - Storming phase of Team Development
 - Technical Design Rocket Vehicle
 - Down selection of technical concepts in Proposal
 - Refine component selections
 - Update Simulations
 - Challenge Details
 - Refinement and component selection
 - Safety
 - Project Management
 - Update Test Plan and Requirements
 - Update Budget and Schedule
Preliminary Design (PDR) Phase

- Preliminary Design should begin to narrow design options
 - Focus should be on Payload / Challenge
 - It is easier to adjust the rocket selection to the Payload
 - You may still be uncertain about other components / ideas
 - These options should still be presented
 - Mockups (procurement) should begin after Proposal
 - These may help make / eliminate a design choice
 - Rocketry components (avionics) may also be procured
 - Altimeters and GPS tracking
 - Wait to procure rocket / recovery components until Payload design is near complete
 - Component testing should continue here
Reports Overview

<table>
<thead>
<tr>
<th></th>
<th>Proposal</th>
<th>PDR</th>
<th>CDR</th>
<th>FRR</th>
<th>PLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Summary</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilities and Equipment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Criteria</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Challenge Criteria</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Overview</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plan – Test</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plan - Requirements</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plan - Budget</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plan - Schedule</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Critical Design (CDR) Phase

- CDR Phase Includes:
 - Forming phase of Team Development
 - Technical Design Rocket Vehicle
 - Final rocket component selections
 - Update simulations
 - Motor selection
 - Challenge Details
 - Final Payload component selections
 - Safety
 - Project Management
 - Update Test Plan and Requirements
 - Update Budget and Schedule
Critical Design (CDR) Phase

- Critical Design should show all design choices are complete
 - The Launch Weekend motor selection is due here
 - There should be little mass changes after this date
 - All component (vehicle / payload) procurements should be wrapping up
 - All components should be accounted for
 - In the Budget
 - In the mass balance
 - In the RockSim simulation
 - Assembly testing should continue here
Reports Overview

<table>
<thead>
<tr>
<th></th>
<th>Proposal</th>
<th>PDR</th>
<th>CDR</th>
<th>FRR</th>
<th>PLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Summary</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilities and Equipment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Criteria</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Challenge Criteria</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Safety</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Design Overview</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plan – Test</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Project Plan - Requirements</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Project Plan - Budget</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Project Plan - Schedule</td>
<td>X</td>
<td>x</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Flight Readiness (FRR) Phase

- FRR Phase includes:
 - Performing phase of Team Development
 - Technical Design Vehicle
 - Design / Build / Fabrication complete
 - Challenge Details
 - Design / Build / Fabrication complete
 - Safety
 - Project Management
 - Tests should be complete, requirements met
 - Budget and Schedule should be finalized
Flight Readiness (FRR) Phase

- Flight Readiness should show the vehicle / payload are ready for flight
 - The as-built vehicle / payload should match latest design
 - Simulations should match as-built
 - Any discrepancies should be accounted for
 - All procurement should be complete
 - All testing should be complete
Reports Overview

<table>
<thead>
<tr>
<th></th>
<th>Proposal</th>
<th>PDR</th>
<th>CDR</th>
<th>FRR</th>
<th>PLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Summary</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Facilities and Equipment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Criteria</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Challenge Criteria</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Safety</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Design Overview</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plan – Test</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Project Plan - Requirements</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Project Plan - Budget</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Project Plan - Schedule</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Post Launch Assessment (PLAR) Phase

- PLAR Phase includes:
 - Vehicle Performance Analysis
 - Assess if Vehicle performed as expected
 - Explain any anomalies
 - Challenge Performance Analysis
 - Assess if Challenge performed as expected
 - Explain any anomalies
 - Project Review
 - Provide a Project Review
Reports Overview

<table>
<thead>
<tr>
<th></th>
<th>Proposal</th>
<th>PDR</th>
<th>CDR</th>
<th>FRR</th>
<th>PLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Summary</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Facilities and Equipment</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Criteria</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Challenge Criteria</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Safety</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Design Overview</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plan – Test</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Project Plan - Requirements</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Project Plan - Budget</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Project Plan - Schedule</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Report and Virtual Templates

- **Use the Templates**
 - On the website
 - Link posted in chat
 - https://spacegrant.carthage.edu/first-nations-launch/rubric/

- **Review template at phase start**
 - Know what you are working to
 - No surprises
 - Template shows level of detail needed

Scoring Rubric

The Moon/Mars Rocket Competitions will be judged by these separate parts:

1. **Design Reports** (75% of total score)
 - Flysheet at **every** cycle (Proposal, PDR, etc) **every** team (every challenge) will fill out a Flysheet and submit a PDF of the Flysheet along with the PDF report.
 - a. **Competition Proposal** (5%)
 - i. Flysheet (Proposal Tab)
 - b. **Preliminary Design Review** (PDR) (15%)
 - i. PDR Virtual Review w/ judges (5%)
 - ii. Flysheet (PDR Tab)
 - c. **Critical Design Review** (CDR) (15%)
 - i. CDR Virtual Review w/ judges (5%)
 - ii. Flysheet (CDR Tab)
 - d. **Flight Readiness Review** (FRR) (15%)
 - i. Flysheet (FRR Tab)
 - ii. Safety Inspection Checklist - Virtual Review (5%)
 - e. **Post Launch Assessment Review** (PLAR) (10%)
Written Report Template

● Plug and Chug
 ○ Address the bullet points
 ○ Reformat accordingly
 ○ Remove the bullet text

● Proposal is probably the most work
 ○ Each Report builds on previous
 ■ Updating tables etc

● Use MS Word functionality
 ○ Headers / sub-headers
 ○ Captions / references

4 Vehicle Criteria

4.1 Selection and Design of Launch Vehicle

- Provide an overview of all key components/systems, including any and all alternatives. Evaluate the pros and cons of each alternative.
- After evaluating all alternatives, present a vehicle design with the current leading alternatives, and explain why they are the leading choices. Describe each subsystem and the components within those subsystems.
- Include images from RockSim where applicable, you may also render 3D CAD models if desired.
- Provide drawings (perhaps using a solid modeler, or 2-D simulation images at the least) using the leading design.
- Provide estimated masses for each component (MARS Only)**

4.2 Recovery Subsystem

- Using the estimated mass of the launch vehicle, perform a preliminary analysis on parachute sizing and determine what size is required for a safe descent.
- Choose leading components amongst the alternatives, present them, and explain why they are the current leaders.
Virtual Report Template

● Plug and Chug
 ○ Pull data from Written Report
 ○ Ensure Virtual Presentation aligns with Written Report

● Practice your Presentation
 ○ For timing – not much time allocated
 ○ Use images! (over text)

Preliminary Launch Vehicle

- [present preliminary vehicle dimensions, materials]
- [present preliminary motor selection]
- [*include relevant drawings, diagrams, images etc. as necessary]
Flysheets Template

● Plug and Chug
 ○ Ensure the data aligns between Written Report and Flysheet
 ○ Ensure you are using the correct sheet (tab) for the Milestone
 ○ Only fill out the required data for that Milestone
Flysheets Overview

● Transmit rocketry (simulation) performance data
 ○ This data tells us:
 ■ that your simulations are accurate
 ■ that your component selections are accurate

● Some of the flysheet (rocketry) data have required values
 ○ This data tells us you understand / meet the requirements

● Flysheet required at each milestone
 ○ The required data is progressive
 ■ Proposal only requires a few fields filled
 ■ FRR requires all fields filled
Budgets

- Budget requirements are to help you manage your budget
 - Team Lead should create and maintain a spreadsheet
 - Include a snapshot of the spreadsheet at each Milestone

- For example:
 - At Proposal, budget can simply be split into sections
 - Challenge - $1500, Vehicle - $1500, Travel - $2000
 - Further refine spreadsheet at each progressive Milestone
 - Include headers in your Budget such as:
 - Subsection / Component / Manufacturer / Vendor / Cost / Shipping

- The Budget here is from your reports
 - There is another Budget required by WSGC Admin (this is Advisor provided)

- Budget guidance as Appendix C in Competition Handbook
Schedules

- Schedule requirements are to help you manage your schedule
 - Team Lead should create and maintain a Gantt Chart
 - Include a snapshot of the Gantt Chart at each Milestone

- Gantt Chart should include timelines of:
 - Report Deadlines and Virtual Reviews
 - Simulations, Trade Studies Window
 - Testing Plan Window
 - Procurement Window
 - Build and Fabrication Window

- Teams typically end up struggling with (accelerating) their schedules
 - Do not ignore the importance of good schedule planning

- Scheduling guidance as Appendix C in Competition Handbook
Test Plans

● Test Plans are to ensure your components function individually
 ○ Team Lead should create a Test Plan spreadsheet
 ○ Include a snapshot of the Test Plan at each Milestone

● Test Plans should be created for all components / assembly
 ○ It is up to the team to determine
 ■ What components to test (during design)
 ■ When to test (schedule)
 ■ What constitutes a successful test
 ■ Include test status in your reports

● Tests may culminate in a full-scale test flight (not required)
● Test guidance as Appendix C in Competition Handbook
Requirements Verification

- Requirements Verification ensure you are designing properly
 - Team Lead should create a Requirements Verification spreadsheet
 - Include a snapshot of spreadsheet at each Milestone
- Requirements are provided in Competition Handbook
 - Ensure you are addressing / satisfying all requirements
 - Create a list of requirements
 - Determine how you will satisfy the requirement
 - Determine who is responsible for the requirement
 - List the status of the requirement verification
 - Missing a requirement will lead to large design changes / schedule issues
- Requirements guidance is an Appendix C in Competition Handbook
Report Tips and Tricks

● Veteran Teams
 ○ Do not simply reuse your old reports – Templates change each year

● Ensure units are consistent in reports / simulations
 ○ Agree on a set of units at the start of the program

● A picture is worth a thousand words
 ○ Use pictures more often than text descriptions
 ○ Include pictures of all component selections
Report Tips and Tricks

- Learn (Acquire) RockSim as soon as possible
 - Include RockSim data / images in your Report and Flysheets
- Use the MS Word functionality
 - Create section sub-headers (templates already have basic headers)
 - Use Figure / Table captions and References
- Use Appendix for large tables or data
Questions?